Sains Malaysiana 53(8)(2024): 1843-1858
http://doi.org/10.17576/jsm-2024-5308-10
Establishing the Association between Ankylosing
Spondylitis and Its
Comorbidities Based on Their Shared Pathways
(Penentuan Asosiasi antara Ankylosing Spondylitis dan Komorbiditinya Berdasarkan Tapak Jalan Sepunya)
ALHASSAN
USMAN BELLO1, SARAHANI HARUN1, NOR AFIQAH-ALENG2,
RAJALINGHAM SAKTHISWARY3 & ZETI-AZURA MOHAMED-HUSSEIN4,5,*
1Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Institute of Climate Adaptation and Marine
Biotechnology (ICAMB), Universiti Malaysia
Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia,
Hospital Canselor Tuanku Muhriz, 56000 Kuala Lumpur, Malaysia
4UKM Medical
Molecular Biology Institute, UKM Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia
5Department of Applied Physics, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received:
30 March 2024/Accepted: 25 June 2024
Abstract
Ankylosing spondylitis (AS) is an autoimmune and
inflammatory arthritis associated with various comorbidities, such as axial spondyloarthritis (axSpA),
cardiovascular disease (CD), Guillain-Barre syndrome (GBS), rheumatic fever
(RF), and vasculitis (Vs). The co-occurrence of these comorbidities underlies
the molecular mechanisms of complex biological interactions shared by
dysfunctional pathways. We used network biology and computational methods to
establish association between biological processes
and molecular mechanisms in AS and its comorbidities. The findings showed
significant association between twelve shared pathways in AS and its
comorbidities. These shared pathways are associated with pathobiological processes, such as immune responses, inflammatory responses and cellular signaling responses, in AS and its comorbidities. Nine of
these pathways are involved in signaling, two are
involved in the metabolic processes, and one is involved in the regulatory
processes in AS and its comorbidities. In conclusion, this work highlights
specific and common shared pathways in AS and its comorbidities. These findings
provide information on key shared pathways that can be used to explain the pathobiological processes of AS and its comorbidities and
can help in therapeutic discovery towards accurate diagnosis and effective
treatment.
Keywords: Ankylosing spondylitis;
comorbidities; network biology; protein-protein interaction; shared pathways
Abstrak
Ankylosing spondilitis (AS) adalah penyakit artritis auto-imun dan
keradangan yang berkait dengan pelbagai komorbiditi seperti spondiloartritis
paksi (axSpA), penyakit kardiovaskular (CD), sindrom Guillain-Barre (GBS),
demam reumatik (RF) dan vaskulitis (Vs). Kewujudan bersama komorbiditi ini
mendasari mekanisme molekul bagi interaksi biologi kompleks yang dikongsi oleh
tapak jalan tidak berfungsi. Pendekatan jaringan biologi dan
pengkomputeran telah digunakan untuk menunjukkan hubungan antara proses biologi dan mekanisme
molekul dalam AS dan komorbiditinya. Hasil kajian ini menunjukkan hubungan yang
signifikan antara dua belas tapak jalan sepunya dalam AS dan komorbiditinya.
Tapak jalan sepunya ini dikaitkan dengan proses patobiologi seperti tindak
balas imun, tindak balas keradangan dan tindak balas pengisyaratan sel dalam AS
dan komorbiditinya. Sebanyak sembilan daripada tapak jalan ini terlibat dalam
pengisyaratan, dua terlibat dalam proses metabolik dan satu tapak jalan
terlibat dalam proses pengawalaturan dalam AS dan komorbiditinya.
Kesimpulannya, kajian ini menyerlahkan tapak jalan sepunya khusus dan umum
dalam AS dan komorbiditinya. Penemuan ini memberikan maklumat mengenai tapak
jalan sepunya yang boleh digunakan untuk menerangkan proses patobiologi AS dan
komorbiditinya serta boleh membantu dalam penemuan terapeutik ke arah diagnosis
yang tepat dan rawatan yang berkesan.
Kata kunci: Ankylosing spondylitis; interaksi
protein-protein; jaringan biologi; komorbiditi; tapak jalan sepunya
REFERENCES
Alanis-Lobato,
G. & Schaefer, M.H. 2020. Generation and interpretation of context-specific
human protein–protein interaction networks with HIPPIE. Protein-Protein
Interaction Networks. Methods in Molecular Biology 2074: 135-144.
Appel, H., Neure, L., Kuhne, M., Braun, J., Rudwaleit, M. & Sieper, J.
2004. An elevated level of IL-10-and TGFβ-secreting T cells, B cells and
macrophages in the synovial membrane of patients with reactive arthritis
compared to rheumatoid arthritis. Clinical Rheumatology 23: 435-440.
Boehme, K.A. & Rolauffs, B. 2018. Onset and progression of human
osteoarthritis - Can growth factors, inflammatory cytokines, or differential
miRNA expression concomitantly induce proliferation, ECM degradation, and
inflammation in articular cartilage? International Journal of Molecular
Sciences 19(8): 2282.
Cella, D., Lenderking, W.R., Chongpinitchai,
P., Bushmakin, A.G., Dina, O., Wang, L. &
Navarro-Compán, V. 2022. Functional assessment of
chronic illness therapy-fatigue is a reliable and valid measure in patients
with active ankylosing spondylitis. Journal of Patient-Reported Outcomes 6: 100.
Chin, C.H., Chen, S.H., Wu,
H.H., Ho, C.W., Ko, M.T.
& Lin, C.Y. 2014. CytoHubba: Identifying hub
objects and sub-networks from complex interactome. BMC Systems Biology 8(Suppl 4): S11.
Choudhary, S., Khan, N.S., Verma, R., Saxena, P., Singh, H., Jain, A.K. & Kumar, N. 2023.
Exploring the molecular underpinning of psoriasis and its associated
comorbidities through network approach: Cross talks of genes and pathways. 3
Biotech 13(5): 130.
Coulson, D.J., Bakhashab, S., Latief, J.S. &
Weaver, J.U. 2021. MiR-126, IL-7, CXCR1/2 receptors, inflammation and
circulating endothelial progenitor cells: The study on targets for treatment
pathways in a model of subclinical cardiovascular disease (type 1 diabetes
mellitus). Journal of Translational Medicine 19(1): 140.
England, B.R., Yang, Y., Roul, P., Haas, C., Najjar, L.,
Sayles, H. & Mikuls, T.R. 2023. Identification of multimorbidity patterns in rheumatoid arthritis
through machine learning. Arthritis Care and Research 75(2): 220-230.
Ghosh, A. & Shcherbik, N. 2020. Effects of oxidative stress on protein
translation: Implications for cardiovascular diseases. International Journal
of Molecular Sciences 21(8): 2661.
Grandon, B., Rincheval-Arnold, A., Jah, N., Corsi, J.M., Araujo, L.M., Glatigny,
S. & Breban, M. 2019. HLA-B27 alters
BMP/TGFβ signalling in drosophila, revealing putative pathogenic mechanism
for spondyloarthritis. Annals of the Rheumatic
Diseases 78(12): 1653-1662.
Guo, X.,
Ji, J., Zhang, J., Hou, X., Fu, X., Luo, Y. &
Feng, Z. 2021. Anti-inflammatory and osteoprotective effects of chikusetsusaponin Ⅳa on rheumatoid arthritis via the JAK/STAT signaling pathway. Phytomedicine 93: 153801.
Hu, X., Li, J., Fu, M.,
Zhao, X. & Wang, W. 2021. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduction and Targeted Therapy 6(1): 402.
Kasher, M., Williams, F.M., Freidin, M.B., Malkin, I., Cherny,
S.S. & Livshits, G. 2022. Understanding the
complex genetic architecture connecting rheumatoid arthritis, osteoporosis and
inflammation: Discovering causal pathways. Human Molecular Genetics 31(16):
2810-2819.
Kaur, H., Mittal, G.K.
& Singhdev, J. 2021. Guillain–Barré syndrome unmasking asymptomatic peripheral spondyloarthritis. Indian Journal of Medical
Specialities 12(1): 37.
Khan, M.A. 2023. Axial Spondyloarthritis and Ankylosing Spondylitis. 6th Ed.
Oxford: Oxford University Press.
Kim, H.A., Lee, E., Park,
S.Y., Lee, S.S. & Shin, K. 2022. Clinical characteristics of patients with
psoriatic spondylitis versus those with ankylosing spondylitis: Features at
baseline before biologic therapy. Journal of Korean Medical Science 37(33): e253.
Kitsak, M., Ganin, A., Elmokashfi, A., Cui,
H., Eisenberg, D.A., Alderson, D.L. & Linkov, I.
2022. Finding shortest and nearly shortest path nodes in large substantially
incomplete networks. Diseases 78(12): 1653-1662.
Li, Y. & Agarwal, P.
2009. A pathway-based view of human diseases and disease relationships. PLoS ONE 4(2): e4346.
Li, Z., Guo,
J. & Bi, L. 2020. Role of the NLRP3 inflammasome in autoimmune diseases. Biomedicine and Pharmacotherapy 130: 110542.
López-Medina,
C. & Molto, A. 2020. Comorbidities management in spondyloarthritis. RMD Open 6(2): e001135.
Łukawska, E., Polcyn-Adamczak, M. & Niemir, Z.I. 2018. The role of the alternative pathway of
complement activation in glomerular diseases. Clinical and Experimental
Medicine 18: 297-318.
Malemud, C.J. 2018. The role of the JAK/STAT signal pathway in rheumatoid
arthritis. Therapeutic Advances in Musculoskeletal Disease 10(5-6):
117-127.
Mantovani, A. & Garlanda, C. 2023. Humoral innate
immunity and acute-phase proteins. New England Journal of Medicine 388(5): 439-452.
Nygaard, L., Polcwiartek, C., Nelveg-Kristensen,
K.E., Carlson, N., Kristensen, S., Torp-Pedersen, C. & Gregersen,
J.W. 2023. Long-term cardiovascular outcomes and temporal trends in patients
diagnosed with ANCA-associated vasculitis: A Danish nationwide registry study. Rheumatology 62(2): 735-746.
Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C.J. & Valko,
M. 2017. Targeting free radicals in oxidative stress-related human diseases. Trends
in Pharmacological Sciences 38(7): 592-607.
Psarelis, S., Hajineocli, A.P., Hadjicosta,
E., Elliott, H.S.A. & Johnson, P. 2017. Is secukinumab a safe alternative treatment for ankylosing spondylitis with Guillain Barré syndrome after
anti-TNF-α treatment? Case report and literature review. Clinical
Rheumatology 36(5): 1197-1199.
Rebordosa, C., Farkas, D.K., Montonen,
J., Laugesen, K., Voss, F., Aguado,
J. & Ehrenstein, V. 2022. Cardiovascular events
and all‐cause mortality in patients with chronic obstructive pulmonary
disease using olodaterol and other long‐acting
beta2‐agonists. Pharmacoepidemiology and Drug Safety 31(8): 827-839.
Rubtsova, K., Rubtsov, A.V., Thurman, J.M., Mennona, J.M., Kappler, J.W.
& Marrack, P. 2017. B cells expressing the
transcription factor T-bet drive lupus-like autoimmunity. The Journal of
Clinical Investigation 127(4): 1392-1404.
Seif, F., Khoshmirsafa, M., Aazami, H., Mohsenzadegan, M., Sedighi, G.
& Bahar, M. 2017. The role of JAK-STAT signaling pathway and its regulators in the fate of T
helper cells. Cell Communication and Signaling15(1):
23.
Singh, D.K. & Magrey, M.N. 2020. Racial differences in clinical features
and comorbidities in ankylosing spondylitis in the United States. The
Journal of Rheumatology 47(6): 835-838.
Sprinzak, E. & Margalit, H. 2001. Correlated
sequence-signatures as markers of protein-protein interaction. Journal of
Molecular Biology 311(4): 681-692.
Sundarrajan, S. & Arumugam, M. 2016. Comorbidities of
psoriasis-exploring the links by network approach. PLoS ONE 11(3): e0149175.
Szabo, G. & Momen‐Heravi, F. 2020. Extracellular vesicles and
exosomes: Biology and pathobiology. In The Liver: Biology and
Pathobiology, edited by Arias, I.M., Alter, H.J., Boyer, J.L., Cohen, D.E., Shafritz, D.A., Thorgeirsson,
S.S. & Wolkoff, A.W. New York: John Wiley &
Sons Ltd. pp. 1022-1027.
Tam, G.H.F., Chang, C.
& Hung, Y.S. 2013. Gene regulatory network discovery using pairwise Granger
causality. IET Systems Biology 7(5): 195-204.
Tan, S., Bagheri, H., Lee, D., Shafiei,
A., Keaveny, T.M., Yao, L. & Ward, M.M. 2022.
Vertebral bone mineral density, vertebral strength, and syndesmophyte growth in ankylosing spondylitis: The importance of bridging. Arthritis
& Rheumatology 74(8): 1352-1362.
Tian, X., Nanding, K., Dai, X., Wang, Q., Wang, J. & Fan, L.
2023. Pattern recognition receptor mediated innate immune response requires a
Rif-dependent pathway. Journal of Autoimmunity 134: 102975.
Tran, T.M., Gill, T.,
Bennett, J., Hong, S., Holt, V., Lindstedt, A.J.
& Colbert, R.A. 2023. Paradoxical effects of endoplasmic reticulum
aminopeptidase 1 deficiency on HLA–B27 and its role as an epistatic modifier in experimental spondyloarthritis. Arthritis
& Rheumatology 75(2): 220-231.
Tzeng,
H.T., Chyuan, I.T. & Lai, J.H. 2021. Targeting
the JAK-STAT pathway in autoimmune diseases and cancers: A focus on molecular
mechanisms and therapeutic potential. Biochemical Pharmacology 193:
114760.
Weber, B., Wallace, Z.S.,
Parks, S., Cook, C., Huck, D.M., Garshick, M. &
Di Carli, M. 2023. Association between systemic vasculitis and coronary
microvascular dysfunction in the absence of obstructive coronary artery
disease. Circulation: Cardiovascular Imaging 16(1): e014940.
Wysocki, K. & Ritter, L. 2011. Diseasome: An
approach to understanding gene-disease interactions. Annual Review of
Nursing Research 29: 55-72.
Xiang, Q., Cheng, Z., Wang,
J., Feng, X., Hua, W., Luo, R., Wang, B., Liao, Z., Ma, L., Li, G., Lu, S.,
Wang, K., Song, Y., Li, S., Wu, X., Yang, C. & Zhang, Y. 2020. Allicin attenuated advanced oxidation protein
product-induced oxidative stress and mitochondrial apoptosis in human nucleus pulposus cells. Oxidative Medicine and Cellular
Longevity 2020: 6685043.
Xin, P., Xu, X., Deng, C.,
Liu, S., Wang, Y., Zhou, X. & Sun, S. 2020. The role of JAK/STAT signaling pathway and its inhibitors in diseases. International Immunopharmacology 80: 106210.
Xue, C.,
Yao, Q., Gu, X., Shi, Q., Yuan, X., Chu, Q. & Li,
L. 2023. Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal Transduction and Targeted
Therapy 8(1): 204.
Yang, W., Rong, L., Xu, Q., Fu, X., Deng, X., Hu, A. & Jiang, Y.
2022. Identification of symptom clusters in patients with ankylosing
spondylitis. International Journal of Rheumatic Diseases 25(10):
1137-1144.
Yates, D. 2021. A shared
pathway? Nature Reviews Neuroscience 22(6): 325.
Yu, L. & Gao, L. 2017.
Human pathway-based disease network. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 16(4): 1240-1249.
Zhang, W., Liu, Y. &
Zhang, H. 2021. Extracellular matrix: An important regulator of cell functions
and skeletal muscle development. Cell and Bioscience 11: 65.
*Corresponding author; email: zeti.hussein@ukm.edu.my
|