Sains Malaysiana 53(8)(2024): 1843-1858

http://doi.org/10.17576/jsm-2024-5308-10

 

Establishing the Association between Ankylosing Spondylitis and Its Comorbidities Based on Their Shared Pathways

(Penentuan Asosiasi antara Ankylosing Spondylitis dan Komorbiditinya Berdasarkan Tapak Jalan Sepunya)

 

ALHASSAN USMAN BELLO1, SARAHANI HARUN1, NOR AFIQAH-ALENG2, RAJALINGHAM SAKTHISWARY3 & ZETI-AZURA MOHAMED-HUSSEIN4,5,*

 

1Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, 56000 Kuala Lumpur, Malaysia

4UKM Medical Molecular Biology Institute, UKM Medical Centre, Jalan Yaacob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia

5Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 30 March 2024/Accepted: 25 June 2024

 

Abstract

Ankylosing spondylitis (AS) is an autoimmune and inflammatory arthritis associated with various comorbidities, such as axial spondyloarthritis (axSpA), cardiovascular disease (CD), Guillain-Barre syndrome (GBS), rheumatic fever (RF), and vasculitis (Vs). The co-occurrence of these comorbidities underlies the molecular mechanisms of complex biological interactions shared by dysfunctional pathways. We used network biology and computational methods to establish association between biological processes and molecular mechanisms in AS and its comorbidities. The findings showed significant association between twelve shared pathways in AS and its comorbidities. These shared pathways are associated with pathobiological processes, such as immune responses, inflammatory responses and cellular signaling responses, in AS and its comorbidities. Nine of these pathways are involved in signaling, two are involved in the metabolic processes, and one is involved in the regulatory processes in AS and its comorbidities. In conclusion, this work highlights specific and common shared pathways in AS and its comorbidities. These findings provide information on key shared pathways that can be used to explain the pathobiological processes of AS and its comorbidities and can help in therapeutic discovery towards accurate diagnosis and effective treatment.

 

Keywords: Ankylosing spondylitis; comorbidities; network biology; protein-protein interaction; shared pathways

 

Abstrak

Ankylosing spondilitis (AS) adalah penyakit artritis auto-imun dan keradangan yang berkait dengan pelbagai komorbiditi seperti spondiloartritis paksi (axSpA), penyakit kardiovaskular (CD), sindrom Guillain-Barre (GBS), demam reumatik (RF) dan vaskulitis (Vs). Kewujudan bersama komorbiditi ini mendasari mekanisme molekul bagi interaksi biologi kompleks yang dikongsi oleh tapak jalan tidak berfungsi. Pendekatan jaringan biologi dan pengkomputeran telah digunakan untuk menunjukkan hubungan antara proses biologi dan mekanisme molekul dalam AS dan komorbiditinya. Hasil kajian ini menunjukkan hubungan yang signifikan antara dua belas tapak jalan sepunya dalam AS dan komorbiditinya. Tapak jalan sepunya ini dikaitkan dengan proses patobiologi seperti tindak balas imun, tindak balas keradangan dan tindak balas pengisyaratan sel dalam AS dan komorbiditinya. Sebanyak sembilan daripada tapak jalan ini terlibat dalam pengisyaratan, dua terlibat dalam proses metabolik dan satu tapak jalan terlibat dalam proses pengawalaturan dalam AS dan komorbiditinya. Kesimpulannya, kajian ini menyerlahkan tapak jalan sepunya khusus dan umum dalam AS dan komorbiditinya. Penemuan ini memberikan maklumat mengenai tapak jalan sepunya yang boleh digunakan untuk menerangkan proses patobiologi AS dan komorbiditinya serta boleh membantu dalam penemuan terapeutik ke arah diagnosis yang tepat dan rawatan yang berkesan.

 

Kata kunci: Ankylosing spondylitis; interaksi protein-protein; jaringan biologi; komorbiditi; tapak jalan sepunya

 

REFERENCES

Alanis-Lobato, G. & Schaefer, M.H. 2020. Generation and interpretation of context-specific human protein–protein interaction networks with HIPPIE. Protein-Protein Interaction Networks. Methods in Molecular Biology 2074: 135-144.

Appel, H., Neure, L., Kuhne, M., Braun, J., Rudwaleit, M. & Sieper, J. 2004. An elevated level of IL-10-and TGFβ-secreting T cells, B cells and macrophages in the synovial membrane of patients with reactive arthritis compared to rheumatoid arthritis. Clinical Rheumatology 23: 435-440.

Boehme, K.A. & Rolauffs, B. 2018. Onset and progression of human osteoarthritis - Can growth factors, inflammatory cytokines, or differential miRNA expression concomitantly induce proliferation, ECM degradation, and inflammation in articular cartilage? International Journal of Molecular Sciences 19(8): 2282.

Cella, D., Lenderking, W.R., Chongpinitchai, P., Bushmakin, A.G., Dina, O., Wang, L. & Navarro-Compán, V. 2022. Functional assessment of chronic illness therapy-fatigue is a reliable and valid measure in patients with active ankylosing spondylitis. Journal of Patient-Reported Outcomes 6: 100.

Chin, C.H., Chen, S.H., Wu, H.H., Ho, C.W., Ko, M.T. & Lin, C.Y. 2014. CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology 8(Suppl 4): S11.

Choudhary, S., Khan, N.S., Verma, R., Saxena, P., Singh, H., Jain, A.K. & Kumar, N. 2023. Exploring the molecular underpinning of psoriasis and its associated comorbidities through network approach: Cross talks of genes and pathways. 3 Biotech 13(5): 130.

Coulson, D.J., Bakhashab, S., Latief, J.S. & Weaver, J.U. 2021. MiR-126, IL-7, CXCR1/2 receptors, inflammation and circulating endothelial progenitor cells: The study on targets for treatment pathways in a model of subclinical cardiovascular disease (type 1 diabetes mellitus). Journal of Translational Medicine 19(1): 140.

England, B.R., Yang, Y., Roul, P., Haas, C., Najjar, L., Sayles, H. & Mikuls, T.R. 2023. Identification of multimorbidity patterns in rheumatoid arthritis through machine learning. Arthritis Care and Research 75(2): 220-230.

Ghosh, A. & Shcherbik, N. 2020. Effects of oxidative stress on protein translation: Implications for cardiovascular diseases. International Journal of Molecular Sciences 21(8): 2661.

Grandon, B., Rincheval-Arnold, A., Jah, N., Corsi, J.M., Araujo, L.M., Glatigny, S. & Breban, M. 2019. HLA-B27 alters BMP/TGFβ signalling in drosophila, revealing putative pathogenic mechanism for spondyloarthritis. Annals of the Rheumatic Diseases 78(12): 1653-1662.

Guo, X., Ji, J., Zhang, J., Hou, X., Fu, X., Luo, Y. & Feng, Z. 2021. Anti-inflammatory and osteoprotective effects of chikusetsusaponin a on rheumatoid arthritis via the JAK/STAT signaling pathway. Phytomedicine 93: 153801.

Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. 2021. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduction and Targeted Therapy 6(1): 402.

Kasher, M., Williams, F.M., Freidin, M.B., Malkin, I., Cherny, S.S. & Livshits, G. 2022. Understanding the complex genetic architecture connecting rheumatoid arthritis, osteoporosis and inflammation: Discovering causal pathways. Human Molecular Genetics 31(16): 2810-2819.

Kaur, H., Mittal, G.K. & Singhdev, J. 2021. GuillainBarré syndrome unmasking asymptomatic peripheral spondyloarthritis. Indian Journal of Medical Specialities 12(1): 37.

Khan, M.A. 2023. Axial Spondyloarthritis and Ankylosing Spondylitis. 6th Ed. Oxford: Oxford University Press.

Kim, H.A., Lee, E., Park, S.Y., Lee, S.S. & Shin, K. 2022. Clinical characteristics of patients with psoriatic spondylitis versus those with ankylosing spondylitis: Features at baseline before biologic therapy. Journal of Korean Medical Science 37(33): e253.

Kitsak, M., Ganin, A., Elmokashfi, A., Cui, H., Eisenberg, D.A., Alderson, D.L. & Linkov, I. 2022. Finding shortest and nearly shortest path nodes in large substantially incomplete networks. Diseases 78(12): 1653-1662.

Li, Y. & Agarwal, P. 2009. A pathway-based view of human diseases and disease relationships. PLoS ONE 4(2): e4346.

Li, Z., Guo, J. & Bi, L. 2020. Role of the NLRP3 inflammasome in autoimmune diseases. Biomedicine and Pharmacotherapy 130: 110542.

López-Medina, C. & Molto, A. 2020. Comorbidities management in spondyloarthritis. RMD Open 6(2): e001135.

Łukawska, E., Polcyn-Adamczak, M. & Niemir, Z.I. 2018. The role of the alternative pathway of complement activation in glomerular diseases. Clinical and Experimental Medicine 18: 297-318.

Malemud, C.J. 2018. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Therapeutic Advances in Musculoskeletal Disease 10(5-6): 117-127.

Mantovani, A. & Garlanda, C. 2023. Humoral innate immunity and acute-phase proteins. New England Journal of Medicine 388(5): 439-452.

Nygaard, L., Polcwiartek, C., Nelveg-Kristensen, K.E., Carlson, N., Kristensen, S., Torp-Pedersen, C. & Gregersen, J.W. 2023. Long-term cardiovascular outcomes and temporal trends in patients diagnosed with ANCA-associated vasculitis: A Danish nationwide registry study. Rheumatology 62(2): 735-746.

Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C.J. & Valko, M. 2017. Targeting free radicals in oxidative stress-related human diseases. Trends in Pharmacological Sciences 38(7): 592-607.

Psarelis, S., Hajineocli, A.P., Hadjicosta, E., Elliott, H.S.A. & Johnson, P. 2017. Is secukinumab a safe alternative treatment for ankylosing spondylitis with Guillain Barré syndrome after anti-TNF-α treatment? Case report and literature review. Clinical Rheumatology 36(5): 1197-1199.

Rebordosa, C., Farkas, D.K., Montonen, J., Laugesen, K., Voss, F., Aguado, J. & Ehrenstein, V. 2022. Cardiovascular events and all‐cause mortality in patients with chronic obstructive pulmonary disease using olodaterol and other long‐acting beta2‐agonists. Pharmacoepidemiology and Drug Safety 31(8): 827-839.

Rubtsova, K., Rubtsov, A.V., Thurman, J.M., Mennona, J.M., Kappler, J.W. & Marrack, P. 2017. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. The Journal of Clinical Investigation 127(4): 1392-1404.

Seif, F., Khoshmirsafa, M., Aazami, H., Mohsenzadegan, M., Sedighi, G. & Bahar, M. 2017. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Communication and Signaling15(1): 23.

Singh, D.K. & Magrey, M.N. 2020. Racial differences in clinical features and comorbidities in ankylosing spondylitis in the United States. The Journal of Rheumatology 47(6): 835-838.

Sprinzak, E. & Margalit, H. 2001. Correlated sequence-signatures as markers of protein-protein interaction. Journal of Molecular Biology 311(4): 681-692.

Sundarrajan, S. & Arumugam, M. 2016. Comorbidities of psoriasis-exploring the links by network approach. PLoS ONE 11(3): e0149175.

Szabo, G. & Momen‐Heravi, F. 2020. Extracellular vesicles and exosomes: Biology and pathobiology. In The Liver: Biology and Pathobiology, edited by Arias, I.M., Alter, H.J., Boyer, J.L., Cohen, D.E., Shafritz, D.A., Thorgeirsson, S.S. & Wolkoff, A.W. New York: John Wiley & Sons Ltd. pp. 1022-1027.

Tam, G.H.F., Chang, C. & Hung, Y.S. 2013. Gene regulatory network discovery using pairwise Granger causality. IET Systems Biology 7(5): 195-204.

Tan, S., Bagheri, H., Lee, D., Shafiei, A., Keaveny, T.M., Yao, L. & Ward, M.M. 2022. Vertebral bone mineral density, vertebral strength, and syndesmophyte growth in ankylosing spondylitis: The importance of bridging. Arthritis & Rheumatology 74(8): 1352-1362.

Tian, X., Nanding, K., Dai, X., Wang, Q., Wang, J. & Fan, L. 2023. Pattern recognition receptor mediated innate immune response requires a Rif-dependent pathway. Journal of Autoimmunity 134: 102975.

Tran, T.M., Gill, T., Bennett, J., Hong, S., Holt, V., Lindstedt, A.J. & Colbert, R.A. 2023. Paradoxical effects of endoplasmic reticulum aminopeptidase 1 deficiency on HLA–B27 and its role as an epistatic modifier in experimental spondyloarthritis. Arthritis & Rheumatology 75(2): 220-231.

Tzeng, H.T., Chyuan, I.T. & Lai, J.H. 2021. Targeting the JAK-STAT pathway in autoimmune diseases and cancers: A focus on molecular mechanisms and therapeutic potential. Biochemical Pharmacology 193: 114760.

Weber, B., Wallace, Z.S., Parks, S., Cook, C., Huck, D.M., Garshick, M. & Di Carli, M. 2023. Association between systemic vasculitis and coronary microvascular dysfunction in the absence of obstructive coronary artery disease. Circulation: Cardiovascular Imaging 16(1): e014940.

Wysocki, K. & Ritter, L. 2011. Diseasome: An approach to understanding gene-disease interactions. Annual Review of Nursing Research 29: 55-72. 

Xiang, Q., Cheng, Z., Wang, J., Feng, X., Hua, W., Luo, R., Wang, B., Liao, Z., Ma, L., Li, G., Lu, S., Wang, K., Song, Y., Li, S., Wu, X., Yang, C. & Zhang, Y. 2020. Allicin attenuated advanced oxidation protein product-induced oxidative stress and mitochondrial apoptosis in human nucleus pulposus cells. Oxidative Medicine and Cellular Longevity 2020: 6685043.

Xin, P., Xu, X., Deng, C., Liu, S., Wang, Y., Zhou, X. & Sun, S. 2020. The role of JAK/STAT signaling pathway and its inhibitors in diseases. International Immunopharmacology 80: 106210.

Xue, C., Yao, Q., Gu, X., Shi, Q., Yuan, X., Chu, Q. & Li, L. 2023. Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal Transduction and Targeted Therapy 8(1): 204.

Yang, W., Rong, L., Xu, Q., Fu, X., Deng, X., Hu, A. & Jiang, Y. 2022. Identification of symptom clusters in patients with ankylosing spondylitis. International Journal of Rheumatic Diseases 25(10): 1137-1144.

Yates, D. 2021. A shared pathway? Nature Reviews Neuroscience 22(6): 325.

Yu, L. & Gao, L. 2017. Human pathway-based disease network. IEEE/ACM Transactions on Computational Biology and Bioinformatics 16(4): 1240-1249.

Zhang, W., Liu, Y. & Zhang, H. 2021. Extracellular matrix: An important regulator of cell functions and skeletal muscle development. Cell and Bioscience 11: 65.


*Corresponding author; email:
zeti.hussein@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next